On uniqueness techniques for degenerate convection-diffusion problems
نویسنده
چکیده
We survey recent developments and give some new results concerning uniqueness of weak and renormalized solutions for degenerate parabolic problems of the form ut − div (a0(∇w) + F (w)) = f , u ∈ β(w) for a maximal monotone graph β, a Leray-Lions type nonlinearity a0, a continuous convection flux F , and an initial condition u|t=0 = u0. The main difficulty lies in taking boundary conditions into account. Here we consider Dirichlet or Neumann boundary conditions or the case of the problem in the whole space. We avoid the degeneracy that could make the problem hyperbolic in some regions; yet our starting point is the notion of entropy solution, notion that underlies the theory of general hyperbolic-parabolic-elliptic problems. Thus, we focus on techniques that are compatible with hyperbolic degeneracy, but here they serve to treat only the “parabolic-elliptic aspects”. We revisit the derivation of entropy inequalities inside the domain and up to the boundary; technique of “going to the boundary” in the Kato inequality for comparison of two solutions; uniqueness for renormalized solutions obtained via reduction to weak solutions. On several occasions, the results are achieved thanks to the notion of integral solution coming from the nonlinear semigroup theory.
منابع مشابه
Finite Volume Schemes for Nonlinear Parabolic Problems: Another Regularization Method
Abstract. On one hand, the existence of a solution to degenerate parabolic equations, without a nonlinear convection term, can be proven using the results of Alt and Luckhaus, Minty and Kolmogorov. On the other hand, the proof of uniqueness of an entropy weak solution to a nonlinear scalar hyperbolic equation, first provided by Krushkov, has been extended in two directions: Carrillo has handled...
متن کاملDegenerate Convection-Diffusion Equation with a Robin boundary condition
We study a Robin boundary problem for degenerate parabolic equation. We suggest a notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations illustrate some aspects of solution behaviour. Monodimensional experiments are presented. Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملA Note on Viscous Splitting of Degenerate Convection-diffusion Equations
We establish L convergence of a viscous splitting method for nonlinear possibly strongly degenerate convection-di usion problems. Since we allow the equations to be strongly degenerate, solutions can be discontinuous and they are not, in general, uniquely determined by their data. We thus consider entropy weak solutions realized by the vanishing viscosity method. This notion is broad enough to ...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کامل